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Free vibrations of rectangular cantilever plates.
Part 1: out-of-plane motion
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Abstract

An analysis of the free transverse vibrations of a cantilevered plate is performed by means of a
variational approximation procedure. Since the variational equation with all natural conditions is available
for the three-dimensional elastic equations but not for the plate equation, the required variational equation
for the plate is obtained by means of a low order expansion in the three-dimensional equation. The
uncoupled flexural portion of the resulting system is used in the problem treated in this work. The problem
is treated by first obtaining the exact solution for flexural waves in the thin plate by satisfying the flexural
equation for the plate with two opposite edges free. The solution results in a set of dispersion curves. A
number of the resulting waves are used in what remains of the variational equation, in which all conditions
occur as natural conditions. Roots of the resulting transcendental equation are calculated, which yield the
eigensolutions and associated eigenfrequencies. The results compare very well with those from finite
element method treatment, which shows that this procedure is very accurate. It also provides an
understanding in terms of the waves that make up the vibration, which is not provided by any of the other
methods.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the problem of the transverse vibrations of a cantilever beam can be solved
exactly. However, if the width of the configuration is relatively large, it can no longer be treated as
a beam, but must be treated as a plate. Although the transverse vibrations of a plate can be treated
exactly if two opposite edges are simply supported, it cannot be treated exactly for many other
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cases. Consequently, the problem of a rectangular cantilever plate free on the other three edges
must be treated by some form of approximation procedure. For this reason, the free vibration
problems for a thin elastic cantilever plate have been studied over the past few decades using some
form of approximation procedure, such as the Ritz or Rayleigh–Ritz method with beam functions
[1,2], with characteristic orthogonal polynomials [3], or by using finite element method (FEM) [4].
Gorman [5] used Fourier series along with superposition to treat this problem for the isotropic
case, and later, extended his work to the orthotropic case [6].

In this work, a variational approximation procedure is used, in which the differential equation
and the edge conditions on either side of the width are satisfied exactly and the edge conditions at
the free and fixed edges are satisfied variationally. The motivation for using this procedure is to
satisfy as much of the problem exactly as possible while leaving the remainder to be satisfied
variationally, using as small a number of the exact solution functions as are needed to obtain the
accuracy required. The procedure is semi-analytical and provides some understanding through the
values of the amplitudes of the exact solution functions used, whereas FEM and the Rayleigh–
Ritz method yield only the final numbers that result. The variational equation for the classical
theories of plates, in which all conditions, i.e., those of both natural and constraint types, arise as
natural conditions, is not readily available. However, since such three-dimensional equations are
available, the two-dimensional variational equation for the flexural vibrations of thin plates is
derived from the existing three-dimensional formulation. Naturally, the conditions of both
natural and constraint types in the resulting two-dimensional variational equation arise as
natural conditions. This is done by making a low order expansion of the displacement in the
thickness co-ordinate and integrating through the thickness in the manner of Mindlin [7]. The
equations are obtained for orthotropic symmetry, in which three-dimensional shear and extension
are not coupled. Following Mindlin, the vertical plate shearing strains are taken to vanish and
the vertical plate shear constitutive equations are ignored in order to reduce the description to the
classical equation of flexure consisting of one differential equation in one variable, which is
the deflection.

The exact solution of the differential equation and free edge conditions on either side of the
width yields dispersion curves. The dispersion curves for two-dimensional flexure of thin plates
presented in this work are exact and to our knowledge have not appeared in the literature before.
Up to eight of these solutions are taken, which are represented by the dispersion curves in what
remains of the variational equation with all natural conditions, including Kirchhoff’s well-known
corner conditions, to obtain a system of linear homogeneous algebraic equations, which enables
the calculations to be performed. Among other things, the calculations clearly show the
dependence of the natural frequencies on the width of the plate for a given length. The results
compare favorably with those in the isotropic literature [1] and with finite element analysis [8].

2. Variational equation for the motion of a thin orthotropic plate

As mentioned in the Introduction, the two-dimensional equations for the thin plate will be
derived from the available three-dimensional variational equation. Thus, it is informative to begin
with the modified form of Hamilton’s principle, in which Lagrange multipliers were introduced to
eliminate constraint conditions and have them arise as natural conditions [9,10], which may be
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written in the formZ t

t0

dt

Z
V

ðtij;i þ %fj � r .ujÞduj dV þ
Z

SN

ð%tj � nitijÞduj dS þ
Z

SC

niðuj � %ujÞdtij dS

� �
¼ 0; ð1Þ

where indicial tensor notation has been employed along with the conventions that a comma
followed by an index denotes partial differentiation with respect to the space co-ordinate xi (i ¼ 1;
2; 3) indicated by the index, a dot over a variable denotes partial differentiation with respect to
time and repeated tensor indices are to be summed. In this equation, the symbols V and r stand
for the volume occupied by the body and the mass density, respectively, SN ; SC denote,
respectively, the portion of the surface on which natural- and constraint-type conditions are
prescribed, tij; uj and ni denote the components of the stress tensor, mechanical displacement and
unit outward normal vectors, respectively, %tj; %fj and %uj represent the components of the prescribed
traction, body force and mechanical displacement vectors, respectively. Note that the first term in
Eq. (1) corresponds to the stress equations of motion, the second term to the boundary conditions
on the portion of the surface on which the traction is prescribed and the third term to the
boundary conditions on the portion of the surface on which the mechanical displacement is
prescribed. Furthermore, it is assumed in this work that the system obeys the linear constitutive
equations

tij ¼ cijklekl ; ð2Þ

and, of course, the infinitesimal strain–displacement relations are given by

ekl ¼ 1
2
ðuk;l þ ul;kÞ; ð3Þ

where ekl ; cijkl denote the components of strain and elastic constants, respectively. It should be
noted that the material employed in this work is assumed to have orthotropic symmetry with
respect to the co-ordinate axes so that extension is not coupled with shear in the three-dimensional
equations.

Consider a fixed Cartesian co-ordinate system xi with the faces of the plate of area S; at
x3 ¼ 7h: The axes x1 and x2 are co-ordinates lying in the mid-plane, intersecting the right
prismatic boundary of the plate in a line path c and the origin of the co-ordinate is as shown in
Fig. 1(a). Fig. 1(b) represents an element of the rectangular plate showing the relevant stress
resultants required in the description of both flexure and extension of the plate.

Following Mindlin [7], the two-dimensional plate equation can be obtained by expanding the
displacement in a sum of powers of the thickness co-ordinate of the plate thus

ub ¼
X1

n¼0

xn
3u

ðnÞ
b ðxa; tÞ; u3 ¼

X2

n¼0

xn
3u

ðnÞ
3 ðxa; tÞ; ð4Þ

where the convention has been employed that the indices a, b=1 or 2 but not 3.
The substitution of the expansions in Eq. (4) into Eq. (3) yields the strains in terms of a sum of

Mindlin’s plate strains eðnÞij [7] in the form

eab ¼
X1

n¼0

xn
3e

ðnÞ
ab ; e33 ¼

X1

n¼0

xn
3e

ðnÞ
33 ; e3a ¼

X2

n¼0

xn
3e

ðnÞ
3a ; ð5Þ
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where

eðnÞij ¼ 1
2

u
ðnÞ
i;j þ u

ðnÞ
j;i þ ðn þ 1Þðd3iu

ðnþ1Þ
j þ d3ju

ðnþ1Þ
i Þ

n o
; ð6Þ

which enables us to write

eðnÞab ¼ 1
2
ðuðnÞ

a;b þ u
ðnÞ
b;aÞ; eðnÞ33 ¼ ðn þ 1Þuðnþ1Þ

3 ; eð0Þ3a ¼ eð0Þa3 ¼ 1
2
ðuð0Þ

3;a þ uð1Þ
a Þ; ð7Þ

if u
ð1Þ
3 and u

ð2Þ
3 are ignored, which will be done shortly by allowing for the free thickness expansion

of the plate.
The substitution of Eq. (4) into Eq. (1), while performing of the integrations with respect to x3

between the limits x3 ¼ 7h; and the integration by parts of the terms differentiated with respect
to x3; yields the variational equation for the thin plate, which can be written in the form

Z
S

dS
X1

n¼0

tðnÞab;a � ntðn�1Þ
3b þ %F

ðnÞ
b � r

X1

m¼0

#Yðm;nÞ .u
ðmÞ
b

 !
du

ðnÞ
b

"

þ
X2

n¼0

tðnÞa3;a � ntðn�1Þ
33 þ %F

ðnÞ
3



�r
X2

m¼0

#Yðm;nÞ .u
ðmÞ
3

!
du

ðnÞ
3

#
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Fig. 1. A schematic of rectangular plate: (a) three-dimensional view of the rectangular cantilever plate and (b) an

element of the rectangular plate.
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þ
Z

cN

ds
X1

n¼0

ð%tðnÞb � nat
ðnÞ
ab Þdu

ðnÞ
b

"
þ
X2

n¼0

ð%tðnÞ3 � nat
ðnÞ
a3 Þdu

ðnÞ
3

#

þ
Z

cC

ds
X1

n¼0

naðu
ðnÞ
b � %u

ðnÞ
b ÞdtðnÞab þ

X2

n¼0

naðu
ðnÞ
3 � %u

ðnÞ
3 ÞdtðnÞa3

" #
¼ 0; ð8Þ

where S is the area of the plate, cN stands for the portion of the edges on which the traction is
prescribed and cC represents the portion of the edges on which the mechanical displacement is
prescribed, and the time integration has been ignored since it is not needed in this work. In Eq. (8),
the definitions

tðnÞij ¼
Z h

�h

tijx
n
3 dx3; ð9Þ

%F
ðnÞ
j ¼

Z h

�h

%fjx
n
3 dx3 þ t3jx

n
3

� 
x3¼h

x3¼�h
; ð10Þ

%t
ðnÞ
j ¼

Z h

�h

%tjx
n
3 dx3 ð11Þ

have been employed, where tðnÞij ; %F
ðnÞ
j and %t

ðnÞ
j are the nth order components of the stress resultants,

body force resultants, prescribed traction resultants on cN ; respectively, and %u
ðnÞ
j are the nth order

components of prescribed displacement on cC ; and

#Yðm;nÞ ¼
Z h

�h

xmþn
3 dx3 ¼

xmþnþ1
3

m þ n þ 1

� �h

�h

ð12Þ

represents the shown integral, which vanishes for m þ n odd, and the notation

½f ðxÞ�x¼q
x¼p ¼ f ðqÞ � f ðpÞ

has been employed.
For notational convenience, the usual compressed matrix notation will be employed hereafter

according to the scheme given in Table 1. Then, the linear constitutive Eq. (2) can be expressed in
the more compact form [11]

tp ¼ cpqeq; p; q ¼ 1; 2;y; 6; ð13Þ

where cpq9cijkl are the elastic stiffnesses, and

tp9tij;
eq9ekl for q ¼ 1; 2; 3;

eq92ekl for q ¼ 4; 5; 6:

(

As noted earlier the plate has orthotropic symmetry with respect to the co-ordinate axes, in
which three-dimensional shear and extension are not coupled. In accordance with the work of
Mindlin [7], the free development of the thickness plate strains eð0Þ33 ¼ u

ð1Þ
3 and eð1Þ33 ¼ 2u

ð2Þ
3 is

allowed. This is accomplished by setting tð0Þ33 ¼ tð1Þ33 ¼ 0 in the plate constitutive equations, which
are obtained by substituting from Eqs. (2) and (5) into Eq. (9), performing the integrations and
employing Eq. (12). This permits the elimination of eð0Þ3 and eð1Þ3 in the two-dimensional
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constitutive equations, which then may be written in the form

½tðkÞ1 ; tðkÞ2 ; tðkÞ4 ; tðkÞ5 ; tðkÞ6 �

¼ #Yðk;kÞ½ðc�11e
ðkÞ
1 þ c�12e

ðkÞ
2 Þ; ðc�12e

ðkÞ
1 þ c�22e

ðkÞ
2 Þ; c44e

ðkÞ
4 ; c55e

ðkÞ
5 ; c66e

ðkÞ
6 �; k ¼ 0; 1; ð14Þ

where

c�11 ¼ c11 � c2
13=c33; c�12 ¼ c12 � c13c32=c33; c�22 ¼ c22 � c2

23=c33 ð15Þ

are the two-dimensional elastic constants for the plate. Note that Eq. (14) shows that the plate
constitutive equations are uncoupled for k ¼ 0 and 1: Furthermore, all the higher order
accelerations, i.e., .u

ð1Þ
j ; .u

ð2Þ
3 may be ignored, since the frequencies are well below the lowest

thickness resonant frequencies of the plate. In addition, tðnÞa3 ; %F
ðnÞ
3 for nX1 are neglected in this

lowest order approximation. With the foregoing approximations, from Eq. (8) the variational
equation may be written in the formZ

S

dS tð0Þab;a � 2rh .u
ð0Þ
b


 �
du

ð0Þ
b �

Z
cN

nat
ð0Þ
ab du

ð0Þ
b ds

�
þ
Z

cC

u
ð0Þ
b d nat

ð0Þ
ab


 �
ds

�

þ
Z

S

dS tð0Þa3;a � 2rh .u
ð0Þ
3


 �
du

ð0Þ
3 þ tð1Þab;a � tð0Þ3b


 �
du

ð1Þ
b

n o�

þ
Z

cC

ds u
ð0Þ
3 d nat

ð0Þ
a3


 �
� u

ð0Þ
3;bd nat

ð1Þ
ab


 �n o

�
Z

cN

ds nat
ð0Þ
a3 þ nat

ð1Þ
ab sb


 �
;s

� �
du

ð0Þ
3 � nat

ð1Þ
ab nbdu

ð0Þ
3;n

� �

þ
Z

cN

ds nat
ð1Þ
ab sbdu

ð0Þ
3


 �
;s

�
¼ 0; ð16Þ

where the subscripts n; s after commas represent the spatial derivatives along the normal and
tangential directions of the edges, respectively, sb denotes the component of the unit tangent
vector to the curve of the edge in the counterclockwise direction, and the assumption of classical
flexure has been employed, which is given in Eq. (19) below. Note that all the inhomogeneous
terms in Eq. (16) have been ignored because they are not required in this treatment. Also note that
in Eq. (16) the terms in the first bracket are for extension and those in the second are for flexure,
which are uncoupled from each other as a consequence of Eqs. (16) and (14). Since in this work
only the flexural portion of the variational equation in Eq. (16) is of interest, the extensional
portion is taken to vanish. Consequently, only the flexural portion is to be understood hereafter
whenever reference to Eq. (16) is made. A companion paper [12] treats the free in-plane vibrations
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Compressed matrix notation scheme

ij or kl 11 22 33 23 (or 32) 31 (or 13) 12 (or 21)

p or q 1 2 3 4 5 6
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of a cantilevered rectangular plate. The last term in Eq. (16) results in Kirchhoff’s corner
conditions when the integration is performed and abrupt discontinuities in the normal occur at
points [7]. It should be noted that they arise from an integration by parts around a cN : Since
Lagrange multipliers were used with constraint-type conditions in the principle from which
Eq. (16) was derived [9], each variation in Eq. (16) is treated as unconstrained [10]. Hence, all the
coefficients of the variations in Eq. (16) vanish independently, from which the plate differential
equations, edge and corner conditions can be obtained. If the solution satisfying these conditions
is obtained, the variational equation is satisfied exactly. However, since not all of the resulting
equations can be satisfied exactly for the problem under consideration, the surface integral term in
Eq. (16) is made to vanish first without considering any edge conditions. From the independence
of du

ð0Þ
3 and du

ð1Þ
b ; the equations

tð0Þa3;a ¼ 2rh .u
ð0Þ
3 ; tð1Þab;a � tð0Þ3b ¼ 0 ð17a;bÞ

are obtained. Since for the classical flexure of thin plates the wavelength along the plate is much
larger than the thickness, Eq. (17b) shows that jtð0Þ3b j5jtð1Þab;aj: On account of this, the constitutive
equations for tð0Þ4 and tð0Þ5 are ignored and Eq. (17b) is used instead. The substitution of Eq. (17b)
into Eq. (17a) yields the classical form of the differential equation for the flexural vibrations of a
thin plate in the form

tð1Þab;ab ¼ 2rh .u
ð0Þ
3 : ð18Þ

To complete the reduction and make Eq. (18) useful, the u
ð1Þ
b must be eliminated from the

description. To this end, from the condition employed by Mindlin [7], which is that the plate
shearing strain eð0Þ3a ¼ 0; the equation

uð1Þ
a ¼ �u

ð0Þ
3;a ð19Þ

is obtained, which enables the elimination of u
ð1Þ
b : Thus, at this point, one differential equation

remains, i.e., Eq. (18), in one variable u
ð0Þ
3 ; i.e., the deflection. Now from the independence of du

ð0Þ
3

and du
ð0Þ
3;n along cN ; from Eq. (16) for free edges, two traction-free edge conditions

nat
ð0Þ
a3 þ nat

ð1Þ
ab sb


 �
;s
¼ 0; nat

ð1Þ
ab nb ¼ 0 ð20Þ

are obtained.
From Eqs. (7), (17b) and (19), the stress resultant–plate displacement gradient relations are

obtained in the form

tð1Þ11 ¼ � #D u
ð0Þ
3;11 þ #nu

ð0Þ
3;22


 �
; tð1Þ22 ¼ � #D Ru

ð0Þ
3;11 þ #nu

ð0Þ
3;22


 �
; ð21Þ

tð0Þ31 ¼ � #D u
ð0Þ
3;11 þ Tu

ð0Þ
3;22


 �
;1
; tð0Þ32 ¼ � #D Ru

ð0Þ
3;22 þ Tu

ð0Þ
3;11


 �
;2
;

tð1Þ12 ¼ � #DðT � #nÞuð0Þ
3;12; ð22Þ

which also result in

tð0Þ31 þ tð1Þ12;2 ¼ � #D u
ð0Þ
3;111 þ #mu

ð0Þ
3;122


 �
; tð0Þ32 þ tð1Þ12;1 ¼ � #D Ru

ð0Þ
3;222 þ #mu

ð0Þ
3;211


 �
; ð23Þ
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where

#D ¼ 2h3c�11=3; #n ¼ c�12=c�11; ð24; 25Þ

R ¼ c�22=c�11; T ¼ 2c66=c�11

� �
þ #n; #m ¼ ð2T � #nÞ: ð26228Þ

3. Solution of the differential equation and edge conditions on the two traction-free opposite faces

As noted in the Introduction the problem of the free flexural vibrations of a cantilever plate
with a fixed edge at x1 ¼ �l; and three free edges at x1 ¼ l; x2 ¼ 7b; as shown in Fig. 1(a),
cannot be solved exactly. At this point, it should be noted that although we have provided in
Fig. 1(b) a differential element of the plate containing all the relevant stress resultants, we do not
derive the flexural and extensional differential equations from the element, but instead derive the
differential equations and edge conditions systematically from the variational formulation. This is
done because although we solve much of the problem exactly, we ultimately leave a portion to be
satisfied variationally and, consequently, we feel that the discourse will be clearer if all the
equations and conditions that are satisfied exactly are obtained from the basic variational
equation. Accordingly, in this work, this problem is treated by first obtaining the exact solution
for low frequency flexural waves in a plate free at x2 ¼ 7b: This results in a set of dispersion
curves giving frequency versus wave number in the x1 direction relations, which are determined in
this section. In the next section a relatively small number of these waves is taken at a given
frequency and substituted in what remains of the variational equation in Eq. (16), which is then
satisfied to obtain the eigenmodes of vibration.

The substitution of Eqs. (21) and (22)3 into Eq. (18) and the replacement of u
ð0Þ
3 by w for

notational convenience, yields the differential equation of the plate in the form

w;1111 þ 2Tw;1122 þ Rw;2222 þ #k2 .w ¼ 0; ð29Þ

where

#k2 ¼ 2rh= #D: ð30Þ

From Eq. (20) for the case at hand, the free edge conditions take the form

tð0Þ23 þ tð1Þ21;1 ¼ 0; tð1Þ22 ¼ 0 at x2 ¼ 7b: ð31; 32Þ

A solution of Eq. (29) may be written in the form

w ¼ R Aeiðot�xx1�Zx2Þ
� �

; ð33Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; A stands for an arbitrary constant and the symbol Rfg signifies the real part of

the argument and will be dropped hereafter.
The solution in Eq. (33) satisfies Eq. (29) provided

Z2
1;2 ¼

�Tx27
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � Rð Þx4 þ R #k2o2

q
R

; ð34Þ
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which shows that for a given x and o; there are two independent Z: Hence, the solution satisfying
Eqs. (31) and (32), after the substitution of Eq. (21)2 and Eq. (23)2, can be written as

wðx1; x2; tÞ ¼
X2

m¼1

X2

n¼1

Cmn sin Zmx2 þ ðn � 1Þp=2
� �

eiðot�xx1Þ; ð35Þ

which includes waves either antisymmetric (n ¼ 1) or symmetric (n ¼ 2) in x2; and Cmn denote
arbitrary constants. The substitution of Eq. (35) into Eqs. (31) and (32) reveals that the symmetric
and antisymmetric solutions uncouple and two sets of uncoupled simultaneous homogeneous
linear algebraic equations are obtained, which may be written in the matrix form

RZ2
1 þ #nx2

� �
sin Z1b þ

ðn � 1Þp
2

� �
RZ2

2 þ #nx2
� �

sin Z2b þ
ðn � 1Þp

2

� �

Z1 RZ2
1 þ #mx2

� �
cos Z1b þ

ðn � 1Þp
2

� �
Z2 RZ2

2 þ #mx2
� �

cos Z2b þ
ðn � 1Þp

2

� �
2
6664

3
7775 C1n

C2n

" #
¼

0

0

" #
;

ð36Þ

where n ¼ 1; 2 for the antisymmetric and symmetric waves, respectively.
For the purpose of calculation, it is convenient to write the equations involved in the

calculation in terms of dimensionless variables, which are defined by

%x ¼ 2bx=p; %Zr ¼ 2bZr=p; %xa ¼ pxa=ð2bÞ;
%O ¼ o= %o; t ¼ %ot; r ¼ 1; 2; ð37Þ

where

%o ¼
p
2b

ffiffiffiffiffiffi
c66

r

r
: ð38Þ

For a non-trivial solution of Eq. (36), the determinant of the matrix must vanish, which yields
the two transcendental dispersion relations

tanðp%Zm=2Þ
tanðp%Zn=2Þ

¼
%Z2ðR%Z2

1 þ #n%x2ÞðR%Z2
2 þ #m%x2Þ

%Z1ðR%Z2
2 þ #n%x2ÞðR%Z2

1 þ #m%x2Þ
; ð39Þ

where ðm; nÞ ¼ ð1; 2Þ for the symmetric waves and (m, n)=(2, 1) for the antisymmetric waves.
From either of the equations in Eq. (36), the amplitude ratios are obtained in the form

%C1nð%xÞ ¼ �ðR%Z2
2 þ #n%x2Þ sinfpð%Z2 þ n � 1Þ=2g; ð40aÞ

%C2nð%xÞ ¼ R%Z2
1 þ #n%x2

� �
sinfpð%Z1 þ n � 1Þ=2g; ð40bÞ

where subscript n ¼ 1; 2 for the antisymmetric and the symmetric modes, respectively.
The cut-off frequencies are obtained by considering the solutions of Eq. (39) when %x ¼ 0 but

%Oa0; which yields

tan p
ffiffiffiffiffiffiffiffi
%k %O

p
=2


 �
tanh p

ffiffiffiffiffiffiffiffi
%k %O

p
=2


 � ¼ 71; ð41Þ
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where

%k ¼
b

ph

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðT � #nÞ

R

r
ð42Þ

and the positive and negative signs on the right-hand side of Eq. (41) correspond to the
antisymmetric and symmetric modes, respectively. Note that for an isotropic material, R ¼ T ¼ 1;
and #n; #D can be, respectively, replaced with the usual Poisson’s ratio n and flexural rigidity D in all
the related equations.

Even though there are an infinite number of solutions at %O ¼ 0; they cannot be obtained from
Eq. (39) in the isotropic case1 because then only one independent Z is obtained from Eq. (34).
However, in the isotropic case, the solutions can be obtained by using Eq. (39) and taking the limit
as %O approaches zero from above, with the result

lim
%O-0

@Fð%x; %OÞ
@ %O

� lim
%O-0

@Cð%x; %OÞ
@ %O

¼ 0; ð43Þ

where

Cð%x; %OÞ ¼
%Z2 %Z2

1 þ n%x2
� �

%Z2
2 þ ð2 � nÞ%x2

� �
%Z1 %Z2

2 þ n%x2
� �

%Z2
1 þ ð2 � nÞ%x2

� �; ð44Þ

Fð%x; %OÞ ¼ tanðp%Zm=2Þ=tanðp%Zn=2Þ; ð45Þ

which enable us to obtain the intersection of the complex branches with the plane %O ¼ 0:
Again, ðm; nÞ ¼ ð1; 2Þ for the symmetric waves and ðm; nÞ ¼ ð2; 1Þ for the antisymmetric waves.

Eq. (41) for the cut-off frequencies and Eqs. (43)–(45) for the limiting case when %O approaches
zero can significantly aid the calculation by determining starting points to get on dispersion
curves, after which Eq. (39) are used to obtain the remainder of the dispersion curves.

4. Variational approximation

Since the solution function Eq. (35) satisfies the differential Eq. (18) and free boundary
conditions at %x2 ¼ 7p=2 exactly, all that remains in Eq. (16) is

�
Z b

�b

dx2 tð0Þ13 þ tð1Þ12;2


 �
dw � tð1Þ11 dw;1

h i
x1¼l

�

þ wdtð0Þ13 � w;1dt
ð1Þ
11 � w;2dt

ð1Þ
12

h i
x1¼�l

�

� tð1Þ12 dw
h ix1¼�l;x2¼b

x1¼�l;x2¼�b
þ2 tð1Þ12 dw
h ix1¼l;x2¼b

x1¼l;x2¼�b
¼ 0; ð46Þ
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1 The analysis is performed for an orthotropic material because the solution for that symmetry is required in future

work.
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where

tð1Þ11 ¼ � #Dðw;11 þ #nw;22Þ; tð0Þ13 þ tð1Þ12;2 ¼ � #Dðw;111 þ #mw;122Þ;

tð1Þ12 ¼ � #DðT � #nÞw;12; ð47249Þ

and the definition ½f ðxÞ�x¼p ¼ f ðpÞ has been employed.
Note that the last two terms in Eq. (46) were obtained by performing the last line integral

around cN in Eq. (16) along the three free edges in the counterclockwise direction. The first of
these arises from the integration along the two opposite free edges evaluated at the wall and the
second and last of these in Eq. (46) came from the two jump conditions across the edges of
discontinuity at x1 ¼ l ; x2 ¼ 7b; which are given by

�1nat
ð1Þ
ab sb dwUx1¼l;x2¼�b � 1nat

ð1Þ
ab sb dwUx1¼l;x2¼b; ð50Þ

and where the jump notation

1gðxÞUx¼q for gþðqÞ � g�ðqÞ;

has been introduced.
Even though all the branches obtained from the dispersion relation can be part of the solution

for the plate bounded in the x1 direction, inclusion of all branches is not only unreasonable, but
also impossible since the dispersion relation includes an infinite number of imaginary and complex
branches. However, since wave numbers having very large imaginary parts have a negligible
influence on the frequency spectrum, they may be ignored in Eq. (35). Hence, the solution
function having P dispersion branches can be written in the form

wð %x1; %x2; tÞ ¼
XP

p¼1

X2

q¼1

X2

r¼1

Apr %Hpqn sin %Zpq %x2 þ ðn � 1Þp=2
� �

� sin %xp %x1 þ ðr � 1Þp=2
� �

ei %Ot; ð51Þ

where

%Hpqn ¼ %Cqnð%xpÞ; %Zpq ¼ %Zqð%xpÞ ð52Þ

are amplitude ratios and n ¼ 1; 2 for the antisymmetric and the symmetric modes, respectively,
and Apr are arbitrary constants to be determined. Here, the amplitude Apr can be a real, an
imaginary or even a complex number since w is understood to be a real function. Special attention
needs to be taken with the complex wave branches since both complex conjugate pairs must be
included.

The substitution of Eqs. (21)1, (22)1, (22)3 and (23)1 into Eq. (46) yieldsZ p=2

�p=2

d %x2 w;111 þ #mw;122

� �
dw � w;11 þ #nw;22

� �
dw;1

� 

%x1¼pl=ð2bÞ

h
þ wd w;112 þ Tw;222

� �
� w;1d w;11 þ #nw;22

� �
� T � #nð Þw;2dw;12

� 

%x1¼�pl= 2bð Þ

i
þ ðT � #nÞ w;12dw

� 
 %x1¼�pl=ð2bÞ; %x2¼p=2

%x1¼�pl=ð2bÞ; %x2¼�p=2
�2 w;12dw
� 
 %x1¼pl= 2bð Þ; %x2¼p=2

%x1¼�pl=ð2bÞ; %x2¼�p=2

n o
¼ 0; ð53Þ
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which is all that remains in the variational equation and where the indices following the commas
represent the derivatives with respect to the dimensionless spatial co-ordinates %xa:

The substitution of Eq. (51) into Eq. (53) along with the integration and evaluation called for
yields two independent sets of homogeneous algebraic equations, corresponding to the symmetric
and antisymmetric modes. Each set of equations consists of 2P equations with 2P unknowns,
which may be written in the matrix form

KX ¼ 0; ð54Þ

where K is a 2P � 2P matrix and X is a 2P unknown magnitude vector with

Apr ¼ X2ðp�1Þþr: ð55Þ

The vanishing determinant of K yields the characteristic equations of the antisymmetric and
symmetric modes of the plate motion along with amplitude ratios from any 2P � 1 of the
consistent homogeneous equations. The amplitude ratios Eq. (55) along with the solution
function Eq. (51) yield the mode shapes of the plate for any antisymmetric or symmetric mode.

5. Discussion of results

Even though the equations derived hold for the plate of orthotropic material (see footnote 1),
the numerical computation was performed for the isotropic material to enable comparison with
the results of Ref. [1]. Since the dispersion curves in the proper wave number range are required
before the eigenmodes obtained in Section 4 can be calculated, the calculation of the dispersion
curves naturally was performed first, and is shown in Fig. 2. Computations were made separately
using quadruple precision and a symbolic math package Maple [13] to reduce possible errors
caused by the large imaginary parts of the wave numbers. Here, Rð%xÞ and Ið%xÞ represent real and
imaginary, respectively. As expected, the complex wave numbers appear in conjugate pairs, which
are known to be associated with edge vibrations in a bounded plate [14]. By using the calculated
dispersion relations, which are basically a function of the Poisson’s ratio only for the isotropic
material, natural frequencies and mode shapes were calculated for various length-to-width ratios.
In order to compare results, the same combinations of aspect ratios and the Poisson’s ratio, which
is 0.3, were chosen as in Ref. [1].

Comparison was also made with the results obtained with P3/PATRAN [8], a commercial finite
element package. For the FEM, around 800–1200 quadrilateral elements with four nodes were
adopted using the subiteration method [8]. Before making the detailed calculations, a number of
convergence tests were performed, as can be seen in Table 2. In the table, the natural frequencies
obtained by including 3, 5, and 7 branches were compared to those obtained by including nine
branches for the first two symmetric modes. Clearly, the convergence is very fast for the first two
symmetric modes. This shows that the real branches in Fig. 2(a) essentially determine those
modes. Moreover, the real branches in Figs. 2(a) and (b) are by far the largest part of all the
modes calculated.

Although the results of calculations shown in Table 3 are for l=b ratios of 5
2
; 3

2
; 1; 2

3
and 2

5
; the

analysis presented in this work should not really be used for l=b ratios significantly less than 1
because then the edge conditions satisfied exactly are over a smaller region than those satisfied
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variationally. When l=bo1 the edge conditions at the fixed edge and the free-cantilevered edge
should be satisfied exactly and the conditions on the free opposite edges should be satisfied
variationally. However, when this is done the waves that determine the dispersion curves become
asymmetric and a much larger number of dispersion curves must be included to make any
calculation. Rather than doing this additional work, the solution was used for ratios l=bo1 and
the accuracy of the results was extremely surprising, as evidenced by the comparison with the
finite element method P3/PATRAN calculation and Leissa’s Rayleigh–Ritz calculation [1], as
shown in Table 3. That is the reason the results for l=bo1 are presented in the table.

Eigenvalues computed for the first six modes of the cantilever plate using the treatment
presented in this work are shown in Table 3 along with the results of Ref. [1] and the
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Fig. 2. Dispersion curves for the out-of-plane motion of the rectangular cantilever plate: (a) for symmetric modes and

(b) for antisymmetric modes.
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Table 2

Convergence tests for the out-of-plane motion of the rectangular cantilever plate for the first two symmetric modes

(l=b ¼ 5
2
): S1=first symmetric mode; S2=second symmetric mode; N( )=natural frequency %k %O (ND) of ( ), R(%)=N

(specified number of branches included)/N(9 branches included)� 100

Included branch # Mode

S1 S2

3 N 0.05461 0.34580

R 98.36 99.76

5 N 0.05534 0.34625

R 99.68 99.89

7 N 0.05548 0.34651

R 99.93 99.96

9 N 0.05552 0.34664

R 100.00 100.00

Table 3

Dimensionless natural frequencies for the out-of-plane motion of the rectangular cantilever plate and their comparison

with Leissa [1] and P3/PATRAN [8]

Mode # l=b

2/5 2/3 1 3/2 5/2

1 C7 2.2055 S C7 0.7915 S C7 0.3506 S C7 0.1551 S C7 0.0555 S

L 2.2232 L 0.7985 L 0.3538 L 0.1566 L 0.0560

P 2.2115 P 0.7961 P 0.3518 P 0.1555 P 0.0557

2 C5 3.0103 A C5 1.4540 A C5 0.8610 A C5 0.5245 A C5 0.2911 A

L 3.0309 L 1.4604 L 0.8637 L 0.5258 L 0.2916

P 3.0190 P 1.4581 P 0.8607 P 0.5248 P 0.2910

3 C7 5.0877 S C7 3.2917 S C7 2.1547 S C7 0.9657 S C7 0.3465 S

L 5.1386 L 3.3143 L 2.1712 L 0.9735 L 0.3496

P 5.1063 P 3.2963 P 2.1668 P 0.9630 P 0.3467

4 C7 8.7122 A C7 4.9916 S C7 2.7537 S C5 1.7695 A C5 0.9272 A

L 8.7909 L 5.0241 L 2.7692 L 1.7784 L 0.9315

P 8.7341 P 5.0094 P 2.7631 P 1.7670 P 0.9287

5 C7 13.766 S C5 5.8773 A C5 3.1316 A C7 2.4103 S C7 0.9740 S

L 13.702 L 5.9440 L 3.1522 L 2.4261 L 0.9821

P 13.666 P 5.9039 P 3.1607 P 2.4473 P 0.9764

6 C8 14.699 S C5 7.1534 A C7 5.4805 S C7 2.7731 S C5 1.7164 A

L 15.028 L 7.2080 L 5.5162 L 2.7917 L 1.7172

P 14.536 P 7.1562 P 5.4865 P 2.7741 P 1.7175

S: symmetric mode; A: antisymmetric mode; N( )=natural frequency %k %O (ND) of ( ); Cn (ND)=N (current research)

with n dispersion branches included; L (ND)=N (Leissa); P (ND)=N (P3/PATRAN).
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P3/PATRAN calculation. In the calculation based on our treatment a total of seven dispersion
branches for the symmetric modes and five for the antisymmetric modes, including the two real
branches in the frequency range of interest, were included in most of the cases. The number of
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Table 4

Dimensionless natural frequencies of cantilever E–B beam and their comparison with the corresponding solutions of

current research (l=b ¼ 5
2
): N( )=natural frequency %k %O (ND) of ( ); EB (ND)=N (E–B beam)

%k %O Mode#

1 2 3 4 5

C7 0.0555 0.3465 0.9740 1.9096 3.0569

EB 0.0544 0.3408 0.9541 1.8697 3.0908

1x

2x

(1) 

(4) 

(1) 

(4) 

(1) 

(4) 

(2)

(5)

(2)

(5)

(2)

(5)

(3) 

(6) 

(3) 

(6) 

(3) 

(6) 

(a)

(b)

(c)

Fig. 3. First six mode shapes for the out-of-plane motion of the rectangular cantilever plate with various length-to-

width ratios: (a) l=b ¼ 2
3
; (b) l=b ¼ 1 and (c) l=b ¼ 3

2
:
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branches used was determined by the fact that the largest imaginary wave number that could be
included put restrictions on the number because of numerical precision. The table shows that the
results of this research are in good agreement especially with those of P3/PATRAN. In general,
the results of Ref. [1] are the largest of the three. Comparison of the natural frequencies for the
available symmetric modes of the current work for l=b ¼ 5

2
with the solutions obtained from the

Euler–Bernoulli (E–B) beam is also made in Table 4. As can be observed the difference between
the two solutions easily exceeds 2% even for the fundamental modes.

Typical mode shapes are depicted in Fig. 3. The meandering shape on the fixed boundary is a
result of the fact that the boundary conditions are satisfied approximately by integrating what
remains of the variational equation over the fixed boundary and the free boundary opposite it,
whereas the conditions on other edges are satisfied exactly. If the plate has an internal surface of
discontinuity, the variational principle adopted here can be easily extended simply by including
Lagrange multipliers at the interface.
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